

Sequential Indifferentiability of STH and EDM

Hrithik Nandi

Institute for Advancing Intelligence, TCG CREST
&

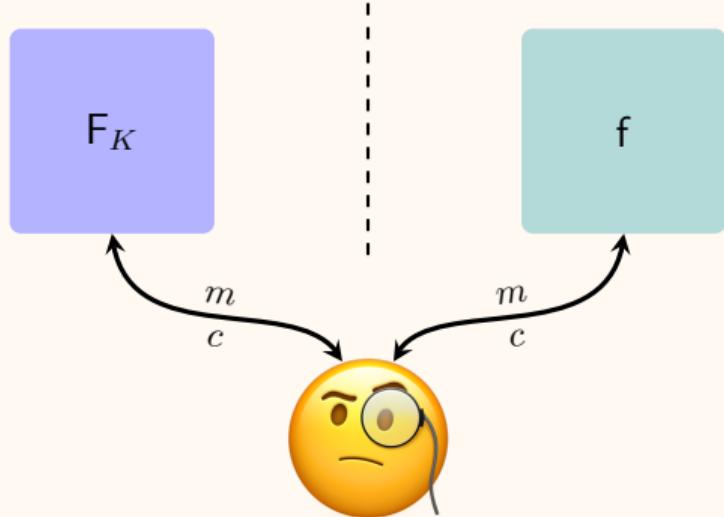
Ramakrishna Mission Vivekananda Educational and Research Institute

Crypto Winter School 2025, IIT Bhilai

December 12, 2025

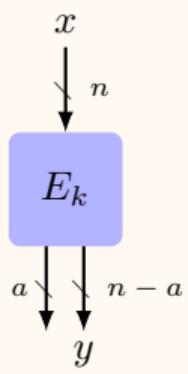
PRF SECURITY: INDISTINGUISHABILITY

- ▶ $\mathsf{F}: \mathcal{M} \times \mathcal{K} \rightarrow \mathcal{C}$, where $\mathcal{M} := \{0, 1\}^m$, $\mathcal{K} := \{0, 1\}^k$ and $\mathcal{C} := \{0, 1\}^n$
- ▶ $\mathsf{f} \xleftarrow{\$} \text{Func}[\mathcal{M}, \mathcal{C}]$, where $\text{Func}[\mathcal{M}, \mathcal{C}]$ is the set of all functions from \mathcal{M} to \mathcal{C}

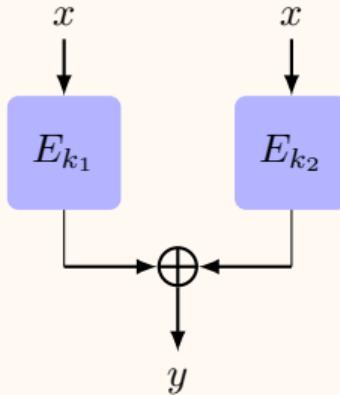


$$\text{Adv}_{\mathcal{A}, \mathsf{F}}^{\text{PRF}}(q) := |\Pr[K \xleftarrow{\$} \mathcal{K}: \mathcal{A}^{\mathsf{F}_K(\cdot)} \rightarrow 1] - \Pr[\mathsf{f} \xleftarrow{\$} \text{Func}(n): \mathcal{A}^{\mathsf{f}(\cdot)} \rightarrow 1]|$$

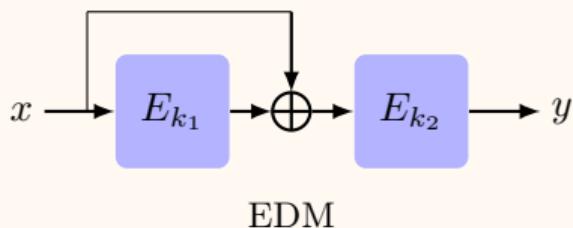
PRP BASED PRF



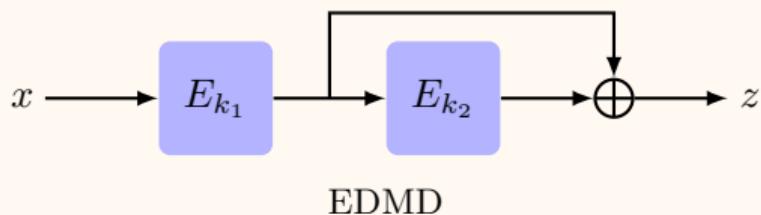
Truncation



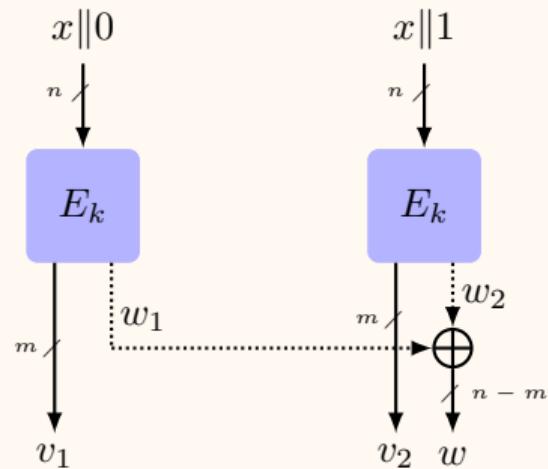
Xor of Permutations



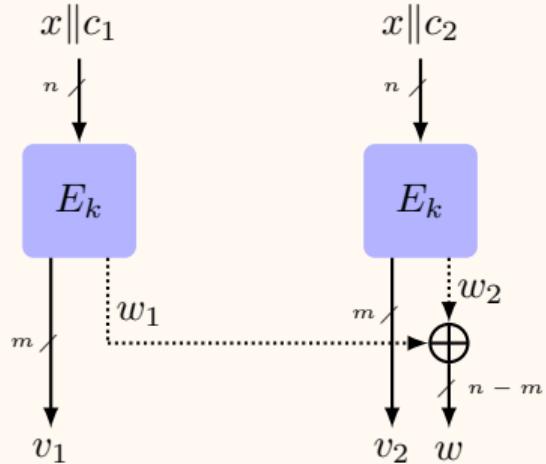
EDM



EDMD



STH

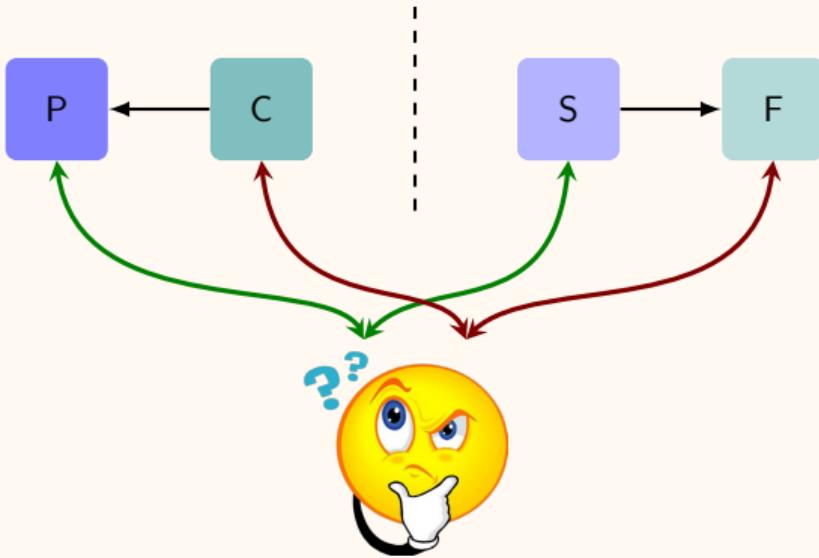


gSTH

- In this work we have proposed gSTH construction, which takes an $(n - l)$ -bit input and produces $(n + m)$ -bit outputs and $c_1 \neq c_2 \in \{0, 1\}^l$ are two constants.

- ▶ In PRF security (indistinguishability) setting underlying primitives remain secret.
- ▶ Motivation behind making the permutations public:
 - ▼ Sometimes block ciphers are instantiated with fixed keys,
 - ▼ Many unkeyed permutations are designed as an underlying primitive of encryption, MAC, hash functions.
- ▶ Now the question is to what degree the constructions behave like random function when they are instantiated with public permutations.
- ▶ Moves to indifferentiability setting.

INDIFFERENTIABLE SECURITY NOTION



$$\text{Adv}_{C^P, F^S}^{\text{indiff}}(\mathcal{A}) := |\Pr[\mathcal{A}^{C, P} \rightarrow 1] - \Pr[\mathcal{A}^{F, S} \rightarrow 1]|$$

$\exists S$ s.t. $\text{Adv}_{C^P, F^S}^{\text{indiff}}(\mathcal{A})$ is negligible \forall adversary \mathcal{A}

\Rightarrow

C is indifferentiable
from F

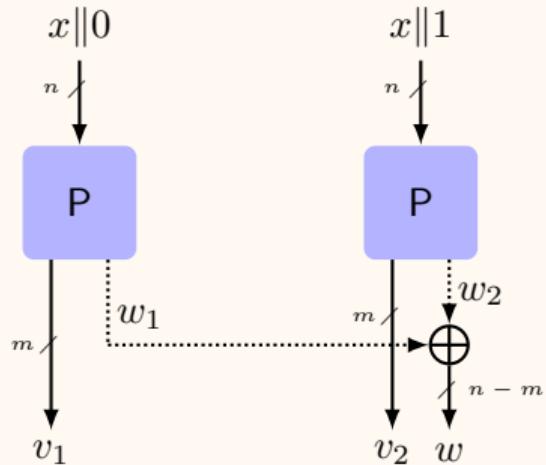
Sequential Indifferentiability

A construction C with oracle access to an ideal primitive P is said to be sequentially (q, σ, ϵ) -indifferentiable from an ideal primitive F if there exists a simulator S with oracle access to F such that for any distinguisher \mathcal{D} making exactly q queries to the primitive and the simulator makes a total of σ queries to the ideal primitive F such that the distinguisher is restricted in first making its primitive queries and then making its construction queries, it holds that

$$\mathbf{Adv}_{C,S}^{\text{seq-indiff}}(\mathcal{D}) = \left| \Pr \left[\mathcal{D}^{C^P, P} \rightarrow 1 \right] - \Pr \left[\mathcal{D}^{F, S^F} \rightarrow 1 \right] \right| < \epsilon.$$

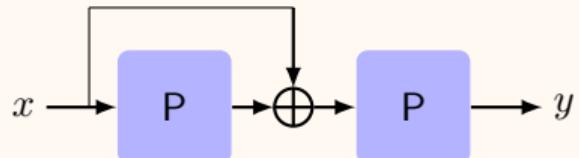
- Sequential Indifferentiability is a weaker notion of Indifferentiability,
- In this model, the distinguisher must make all its queries to the ideal primitive P (or the simulator S) before querying the construction C^P (or the ideal primitive F).

INDIFFERENTIABLE ATTACK ON STH



1. Make inverse primitive query with 0^n ;
2. Let u be the response;
3. Make construction query with $\text{left}_{n-1}(u)$;
4. Let $v_1\|v_2\|w$ be the response;
5. If $(\text{right}_1(u) = 0 \wedge v_1 = 0^m) \vee (\text{right}_1(u) = 1 \wedge v_2 = 0^m)$
 Return 1;
6. Else
 Return 0;

$$\begin{aligned}
 \text{Adv}_{\text{STH}, \text{S}}^{\text{seq-indiff}}(\mathcal{A}) &:= |\Pr[\mathcal{A}^{\text{STH}, \text{P}} \rightarrow 1] - \Pr[\mathcal{A}^{\text{RF}, \text{S}} \rightarrow 1]| \\
 &\geq \left| 1 - \frac{2p(n)}{2^m} \right|
 \end{aligned}$$



1. Make inverse primitive query with 0^n ;
2. Let x be the response;
3. Make construction query with x ;
4. Let z be the response;
5. If $z = 0^n$
 Return 1;
6. Else
 Return 0;

$$\begin{aligned}
 \text{Adv}_{\text{P-EDM}, \text{S}}^{\text{seq-indiff}}(\mathcal{A}) &:= |\Pr[\mathcal{A}^{\text{P-EDM}, \text{P}} \rightarrow 1] - \Pr[\mathcal{A}^{\text{RF}, \text{S}} \rightarrow 1]| \\
 &\geq \left| 1 - \frac{2p(n)}{2^m} \right|
 \end{aligned}$$

OUR CONTRIBUTION

Construction	Sequential	Regular	Reference
TRP	$\min\{2^{(n+m)/3}, 2^m, 2^l\}$	$\min\{2^{(n+m)/3}, 2^m, 2^l\}$	Choi et. al'19
SUMPIP	$2^{n/2}$?	Dodis et. al'08
SoP	$2^{2n/3 - \log n}$	$2^{2n/3 - \log n}$	Gunsing et. al'23
STH	×	×	Our work
STH2	×	×	Our work
gSTH	2^l (†)	?	Our work
EDM	$2^{n/2}$?	Our work
P-EDM	×	×	Our work

Table: Sequential and Regular Indifferentiability Results of PRP-based PRFs. The symbols "?" and "×" mean Not known and insecure, respectively. We use the symbol (†) to denote that the bound is tight.

FOR MORE DETAILS

<https://eprint.iacr.org/2025/1518>

Thank You!

Questions?